

White Paper

Empowering MDM With Efficient
Data Matching in the Cloud

Page 2 of 12

White Paper

Internal Research Project

 For: General Publication

Document Reference: INT-AI-2022-01

Document Date: 07/07/2022

Prepared by: Rafi Trad Date: 07/07/2022 (v1.1)

Document status:

Commercially Insensitive

Public distribution permissible

Page 3 of 12

Table of Contents

EXECUTIVE SUMMARY ... 4

PROBLEM STATEMENT ... 4

OUR SOLUTION ... 5

FUZZY MATCHING METHODOLOGY ... 6
TECHNICAL DETAILS ... 7

HOW SENTINEL’S DATA PLATFORM INTEGRATES EVERYTHING .. 8

RESULTS AND CONCLUSION ..10

POSSIBLE USE CASES .. 10

BIBLIOGRAPHY ...11

Page 4 of 12

Executive Summary

Identifying real-world entities and tracing them across multiple datasets is an essential

goal of any Master Data Management (MDM) project.

Following any preliminary data validation and rationalisation of the source datasets,

Data Matching is the first major step to achieve that goal, which can be exact or

approximate/fuzzy. Approximate matching is flexible and forgiving when data change

slightly across Big Data sources; a very desirable feature but a costly one in terms of

performance.

In this paper, we will explain how we achieved a radical speedup factor estimated at

600x in matching compared to a simple approach, and what technologies we used. Such

an improvement can help in achieving faster and better data governance, and we

highlight where to employ this type of approach as a culmination to the paper.

Problem Statement

Linking datapoints to connect data entities is a fundamental task in any Master Data

Management (MDM) pipeline (JOSHI, 2019). At Sentinel Partners, we call this step

“matching” as seen in Figure 1, which allows us to perform entity resolution. Entity

resolution is “determining when references to real-world entities are equivalent (refer to

the same entity) or not equivalent (refer to different entities)” (Talburt, 2011). In other

words, it allows us to identify the same real-world entity (person, property, etc.) across

different datasets and data feeds.

Figure 1 Basic Sentinel Partners MDM pipeline; matching is a fundamental step.

To this end, datapoints must be matched to each other as the first step. In fact, exact and

approximate (fuzzy) matching plays a key role in identifying real-world entities in data

to obtain a single view of each entity (Talburt, 2011). However, it is neither

straightforward nor efficient to match datapoints. Two approaches to achieve this are

handcrafted matching rules and brute force matching.

Crafting customised matching rules requires expert knowledge of the source data

content that is not always readily available, and it might fail to find all possible matches.

The resultant matching rules are tailored to each domain, and thus they need

considerable modification and maintenance across domains or datasets.

Page 5 of 12

On the other hand, brute force matching is useful as it gives us the full picture, but it is

very inefficient and needs a generic way of matching any two datapoints.

Let’s concentrate on brute force matching. Assume that we have a small dataset of 1000

properties with their addresses, and we want to match duplicate entities in the dataset.

Assume that an entity’s address might change slightly throughout the dataset. This

forces us to use approximate matching because exact matching cannot detect slight

changes in data. Many database management systems and programming languages offer

fuzzy matching functions, but the problem with these solutions is they are not optimised

for large datasets out-of-the-box.

Additionally, we need to perform almost 500k comparisons to cover the 1000 records

in our example (precisely 499,500 comparisons due to commutativity), and this number

increases rapidly with more data. Vertical scaling is therefore not a workable solution.

To conclude, more efficient and flexible matching approaches are needed to handle large

datasets in general. Brute force matching with a generic matching mechanism, that must

be fault tolerant, is a feasible domain-agnostic solution. Such a solution enhances entity

resolution, a crucial task in master data management projects and pipelines.

Our Solution

The main concept of our solution is to look at the datapoints differently. Each datapoint

has many data attributes, some of which can be irrelevant for matching. We splice the

relevant data attributes to form what we call data “sentences”, and we generate one

sentence per datapoint. We then transform all data sentences to numbers and process

this interim representation of data instead. Computers are extremely fast processing

numbers compared to any other form of data.

In the parlance of artificial intelligence (AI), this process is called vectorisation. We

borrow some approaches from an AI field called Natural Language Processing (NLP)

(What is Natural Language Processing?, 2020) to vectorise our data sentences and make

them data vectors.

The semantics of these data sentences do not matter, and we want to focus on the literal

characteristics only; that’s why Postgres DB text search, AI deep learning (embeddings)

and similar methods were not viable. At the end, we compare the data vectors, which

are purely numerical, to quantify similarities find the best matches.

On the technical side, our solution exploits the virtually limitless power of cloud

computing and integrates into our software (Sentinel Data Platform). That means clients

do not have to deal with cloud configuration as the cloud architecture is entirely

transparent to them. The solution is written in Python1 and called from Java, and it can

run on both Azure Machine Learning Services and Azure Synapse Analytics (big data

processing), but we will use the latter. Next, we will detail the methodology and our

technical implementation.

1 Suitable Python libraries were used to implement the solution

Page 6 of 12

Fuzzy Matching Methodology

Figure 2 shows the workflow of the implemented fuzzy matching solution. A datapoint

comprises several attributes, like age and gender for people, tenure types for properties,

and so on.

Our solution needs a set of relevant data attributes to consider when matching

datapoints. Each attribute will be converted to text to form a data “word”. The

concatenation of all data words for a datapoint forms its data “sentence”, so each

datapoint will be converted to a data sentence consequently. This is a simple procedure,

but care must be taken to handle specific edge cases (missing data) and ensure consistent

sentence generation.

Figure 2 Our fuzzing matching solution flowchart

The data sentences are processed further using established methods from NLP to convert

them to numbers. There are many approaches to represent texts as numbers in NLP, but

since we are interested in the literal characteristics of the data sentences, we opt for the

n-gram approach (n-gram, 2022). After this stage, which is called vectorisation, each

data sentence will be a 1-dimenstional array of simple numbers, or a data vector. This

does not change the original datapoints but represents them in a more convenient way

for computers.

Page 7 of 12

You can think of a data vector as an arrow in space, each arrow will have a specific

magnitude (length) and direction, and the space in which these data vectors live is called

a Vector Space. By modelling our datapoints as vectors in space, we open the door to

powerful algebraic computations that run extremely well on computers. This modelling

approach is called Vector Space Model (VSM) (Tam, 2021).

The next step is to assess how similar any two data vectors are, which tells us how

similar two datapoints are from a geometric perspective. Again, there are a lot of

algebraic calculations that can find such similarity scores almost instantly, like dot

product and cosine similarity. We adapt a mechanism to produce a similarity score that

satisfies the following:

1- It is scaled to fall into [0, 100] and convey a confidence level. A score of 100

means a 100% match, or an exact match essentially

2- It takes into consideration the length of data sentences, which corresponds to

the magnitude of the associated data vectors

3- It considers the orientation of data vectors

Finally, we use the VSM to pick the top K matches, and we can specify the number of

top matches as a parameter too. As an output, we end up with the best match(es) for

each datapoint, with a confidence score (between 0 and 100) to help identify underlying

issues in data and solve them. A confidence score of 100 means there is a definite match,

so our solution can be seen as both exact and approximate matching solution.

Technical Details

We use Python and Java to implement the solution and integrate it into our Sentinel Data

Platform. The solution runs in Microsoft Azure and utilises Azure Synapse Analytics.

In addition to that, we utilise an Azure Data Lake Gen 2 to read and write data files

where needed (see Figure 3), but we can talk directly to databases.

Figure 3 Azure components used in our matching solution

To run the code, we execute an Azure pipeline from within our Hub, and consume the

results that are stored in the data lake. We need to create an Azure Synapse workspace,

configure its big data Apache Spark pools, and link the workspace to a Gen2 data lake.

To configure the Apache spark pools, we expose all necessary software packages with

their versions to the spark pool of executors. It is simple to do so using the Packages

option in Azure Synapse, where we upload a requirements text file that specifies all

required packages and their versions:

Page 8 of 12

Based on the uploaded requirements.txt file, Spark configures all its distributed

executors, after which we can run the solution without the need to re-configure any

Apache Spark Pools.

Another setting we configure is the scaling of Apache Spark executors. Our code can

run on any executor size, aka. node size, but we opt for the large option (16 Cores,

128GB RAM). The smallest size provides us with 4 cores and 32GB RAM and can run

the solution, but it takes more time of course.

The last step is linking a data lake to Azure Synapse workspace, so that we can read

from it and write to it in Synapse. It is possible to set up as many linked services as

needed in Synapse using various authentication methods, as shown in the following

screenshots (account keys, managed identities, etc.):

We link our Synapse workspace to a data lake using an encrypted storage account key,

which can be rotated every while to provide maximum security. This option does not

rely on timed authentication tokens, and it can thus accommodate any workload. Using

other options might lead to a failed execution, as an authentication token might expire

before the code finishes execution, and that wastes our result set instead of saving it

back to the data lake. Our solution can integrate directly into databases and read/write

from/to them without data lakes. Moreover, the result set can be imported and consumed

by the Sentinel Data Platform with minimum effort.

How Sentinel’s Data Platform Integrates Everything

Sentinel’s Data Platform can be configured to seamlessly integrate with Azure

resources. It can access Azure Data Lake Gen2 storage accounts from its user interface

as we see in the next image:

Page 9 of 12

Besides, pure Python scripts and many other kinds of scripts can be maintained and run

locally as well from the Data Platform, so the solution can run on-premises if desired:

Page 10 of 12

Results and Conclusion

We put our solution to test against a very simple database approach as a naïve baseline.

Here are the details of our experiment:

Workload

Dataset 1: 31,390,938 datapoints

Dataset 2: 38,787 datapoints

Task Find the exact match or the best approximate match from dataset 1 for

each point in dataset 2

Configuration Baseline: Azure Database for Postgres with 2 vCores

Our solution: Azure Synapse Analytics with one large node, 16 vCores

The baseline approach simply runs SIMILARITY Postgres function on each pair of data

sentences to produce a similarity score. SIMILARITY function relies on n-grams under

the bonnet. We run the function once for each pair of datapoints, so it has to run 1.2T

times to finish the job. Afterwards, we need to select the best matches, which is an

additional overhead, but we will neglect this aspect.

Our solution finished the task in 1 hour and 39 minutes (5940 seconds) – including

Azure Synapse resource allocation/dispatch overhead. The baseline was too inefficient

to run the task with full data, so we reduced dataset 1 to 1000 datapoints only, and they

took 15 minutes and 20 seconds, or 920 seconds. If time increases linearly with data we

estimate that the baseline solution would take:

2 𝑣𝐶𝑜𝑟𝑒𝑠 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑡𝑖𝑚𝑒 = 920 ×
31390938

1000
 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 = 28,879,663 𝑠𝑒𝑐𝑜𝑛𝑑𝑠

We must adjust for having 1/8 the vCores available to the baseline solution compared

to our solution. Assuming that adding cores increases performance linearly (which is a

generous assumption in favour of the baseline method - because having two cores does

not double the performance in practice), our final estimation would be:

16 𝑣𝐶𝑜𝑟𝑒𝑠 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑡𝑖𝑚𝑒 =
28,879,663

8
= 3,609,957 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 = 42 𝑑𝑎𝑦𝑠

In comparison, our solution is estimated to be ~600 times faster than the naïve baseline.

Furthermore, we observed that the confidence scores produced by our solution were

more intuitive than the similarity scores produced by Postgres. This shows that our

solution which relies on cloud computing with advanced data processing can be much

better than conventional solutions, both in terms of efficiency and effectiveness.

Possible Use Cases

There are many ways to employ the presented solution in real-world scenarios. Knowing

the best possible match for a datapoint locally or from another dataset, in an efficient

and definitive manner, can empower both data transformation and tailored data

matching procedures.

Page 11 of 12

Moreover, the computed confidence scores can guide targeted exploratory data analysis,

which aims to discover new validation and matching rules for adoption in a final

configuration. Cleaning data becomes easier as well by focussing on low-quality

matches and investigating why a better match couldn’t be found. The presented solution

generates valuable insights from datasets with little to no data cleaning beforehand, and

it enriches a wide spectrum of data management processes.

Any match score can be explained, and while it is harder to understand than plain

conditions or even regular expressions, it does pay off as we have hoped to show in this

paper.

Bibliography

JOSHI, D. (2019, August 19). Retrieved from https://www.informatica.com/blogs/data-

processing-pipeline-patterns.html

n-gram. (2022, February 20). (Wikipedia) Retrieved from

https://en.wikipedia.org/wiki/N-gram

Talburt, J. R. (2011). Entity Resolution and Information Quality . Elsevier.

Tam, A. (2021, October 23). A Gentle Introduction to Vector Space Models . (Machine

Learning Mastery) Retrieved from https://machinelearningmastery.com/a-

gentle-introduction-to-vector-space-models/

What is Natural Language Processing? (2020, July 2). (IBM) Retrieved from

https://www.ibm.com/cloud/learn/natural-language-processing

Page 12 of 12

About Sentinel

Sentinel is a Data Solutions & Consultancy company providing businesses with

the technology needed to gain insights and take control of their data. Specialising

in Master Data Management, with 10+ years’ experience in the industry we pride

ourselves on our ability to empower business with high value systems and our

commitment to Data Protection.

Offices

Head Office

19 Highfield Road

Edgbaston

Birmingham

B15 3BH

Consultancy Centre

Kingsway House

40-41 Foregate Street

Worcester

WR1 1EE

Call us: +44(0)800 612 2116

Email us: info@sentinelpartners.co.uk

	Executive Summary
	Problem Statement
	Our Solution
	Fuzzy Matching Methodology
	Technical Details

	How Sentinel’s Data Platform Integrates Everything
	Results and Conclusion
	Possible Use Cases

	Bibliography
	About Sentinel
	Offices
	Head Office
	Consultancy Centre

